
I IO ALGORITHMS AND DATA STRUCTURES

and finally, multiplying through by 2(n * l), proves

Theorem 6.2: The average complexity of a sequence of n insertions
into an initially empty binary search tree, assuming that each of the
n! distinct permutations of l, 2, ..., n is equally likely to be an
instancc. is

.1(n):2(n*l)Hn-4n

where ll,,: \i:, l/i is the nth Harmonic number.

The formula Yi:t l/i cannot be simplified any further, as far as anyone
knows. but there is an approximation Hn-lnn * 7, where y - 0.55j2
is Euler's constant. So l(n) is about l.38nlog2n for the n insertions,
which. loosely speaking, is O(logr) per insertion - considerably less than
the worst case.

This analysis can be extended to include retrievals (Exercise 6.6) and
updates (which are O(l), since a poinrer to the entry is given). But it tells
us nothing about the binary search tree when deletions occur, and in fact
almost nothing is known (Knuth, 1973b).

6.6 Splay Trees
In section 6.3 several heuristics for adjusting a linked list to takc
advantage of locality of reference in the operation sequence were studicd.
The most successful one was move-to-front: after accessing entry x, movc
it to the front of the list. This suggests that the analogous heuristic lirr.
binary search trees should be tried: after accessing node x, move it to thc
root of the tree, where it will be found quickly by subsequent acccsscs.

A binary search tree is not as simple to adjust as a linked list, be-clusc
the condition that the key in a node be greater than all the keys in its lcli
subtree and smaller than all the keys in its right subtrec nrusl lrt'
preserved. (This condition was called the binary search trce inyuriurt! in
Section 6.4.) Nevertheless, there is a way.

consider any internal node y that has a left child ,r which is als. rrr
ternal. A right rotation aly adjusts the trec so lhal .l,bccorncs llrt. rrlilrt
child of -r:

()

SYMBOLTABLES III

A, B, and C are arbitrary subtrees, possibly empty. The adjusted trcc has
the same nodes as the original, and, most important, the binary scart.lr
tree invariant is preserved. This is easily verified by traversing thc two
trees in inorder: both give the ordering A, x, B, y, C, so if the invariurrr
holds in the first tree, it holds in the second.

A left rotatior is similar, going the other way:

Again, the binary search tree invariant is preserved. These rotations
provide a general way to adjust binary trees; they were first usccl by
Adel'son-Vel'skii and Landis (1962\.

Rotations are useful here because in each case the depth of nodc r

dccreases by I . Thus, a sequence of rotations at the parent of x will ntovt'
\ to the root. For example,

I his givcs a first heuristic for binary search lrees: after acccssing (that is.
rnscrting or rctricving) a node -r, move it to the root by a scqucncc ol'lt'li
;rrrtl rrglrt rotations. This hcuristic, which is callcd tltovr-!o-fttol. lras bccrr
slrr<licrl hy Allcn and Munro (1978) and by Birncr (1979).

M<lvc-lo-rool should intprovc thc pcrlbrmancc ol'thc birrary sctrr.t.lr
lrt't'wlte tt thcrc is locality ol-rcfl'rcncc in thc <lpcralion sct;uclrcc, brrl it rs
rrol i1l1';11..1'lrc lirutl lrcc itt lhc cxrrrrrplc lrbov'c is rrrlrrgirrirlll'lcss lrlrlltrrt't.tl
llr:rn llrt' sllrltirrli trcc, antl tlrc cxlrrrrl.rlc

(,.) t(,,)
./ '.\(,/\ (,)

(,) .. (,,t')

(,, j
(i ')

I'z--\
,--\'^-

\
A

I

()l

I I 2 ALGoRITHMS AND DATA STRUCTURES

r)llkes it clear that move-to-root will not turn an unbalanced tree into a
balanced one.

Sleator and Tarjan (1985b) have found a way to move x to the root
lnd simultaneously clean up an unbalanced tree. They perform the
r:rluivalent of two rotations at each splaying step:

Case I

Case 2

lrrrch casc has a symmetric variant, not shown here. Altogether these four
(':rscs account for the four possible places that x could occupy as a

1'.rlndchild of z. It is easy to verify that these transformations preserve the
lrinirry scarch tree invariant.

Alicr these splaying steps have been performed as many times as
possihlc, r will be the root or a child of the root. If x is a child of the root,
wt' pcrlirrm a final rotation to bring x to the root:

cus'l'3

;5]%-{oh
I lrt' wlr<rlc proccss is called a splay at x, and a binary search trcc witlr
slrl:rying is callcd a splay lree.

f t f urppcns that Cascs 2 and 3 do exactly what move-to-root woukl d<r

rrr tlrt' s:urrc situation. Howcvcr, applying movc-to-rool to Casc I worrkl
v rt'ltl

sYMBoL TABLES I l3

which is not the same. The crucial difference is that, while move-to-root
leaves .B at its original depth, the splaying step moves both subtrees of x
up at least one level. Although subtrees C and D appear to lose out in
splaying's Case I transformation, they become descendants of x and so

move upwards in later splaying steps. Here is a larger example which
shows clearly how splaying balances an unbalanced tree:

When implemented carefully, splay trees are very fast in practice (Jones,

I 986).

Amortized analysis of splay trees. An insertion or retrieval has two
stages: the search down some path, followed by splaying back up the path.
'l'he search can be ignored, since its cost is of the same order as the splay,
and the number of rotations performed while splaying (or equivalently,
thc depth of the accessed node) can be taken as the measure of
conrplexity.

The potential function used in this analysis is quite remarkable. Let
s(v) be the number of nodes in the subtree rooted aI x,and let r(x), the
rttrtk of x, be defined by r(x) :logz s(x). For any splay tree T, define

o(7') :)'(") :)logrs(x)
.\€7' xeT

ll / is conrplctc, @ is small. For example,

A--\ /--/t\
'i)

/ lt't

-()

i,,s^ AA

't' :

I I4 ALGORITHMS AND DATA STRUCTURES

yiclds <D (I) : log25 * log23 * 3logrl - 3.9. If 7" is skew, <D (?') is large:

T:

riclrling O(n : log25 * log24'l log23 * log22 * log2l :5.9. So
<|t17) is reminiscent of the internal path length i(I), modified to have an
()(ttl<'tgn) maximum rather than O(nz). This connection with internal
grrrth lcngth is clarified by Exercise 5.9.

As has been seen, splaying at x consists of a number of steps:

I splaying step at x (Case I or 2)

I splaying step at x (Case I or 2)

nt splaying step at x (Case l, 2 or 3)

Ilrc rrrrrortized complexity ai: ti+ Q(T) - Q(Ti-,) will be calculated
Ior cach stcp. Then the total amortized complexity of all the steps will
t'rlrurl thc amortized complexity of splaying at x, which is taken to be the
t osl of'thc insertion or retrieval.

llclbre starting the main analysis, the following technical lemma is
rt'rlrircd.

l,cmma: Forall tvand Bsuchthatcr> 0, B> 0.andd + p< l,log2rv
I loglP' -2.

l)rrxrf: Sincc loglrv * log2p : log2rvp. and thc logarithm is a mono-
Ionc irrcrcasing lunction, its valuc will bc maximum whcrr,vfi is
rrrrxirrrrrnr. In thc givcrr rcgion, it is clcar that this occr.rls whcn
,t fl l/1. wlrcrr ltlg.,,v I log..r// 2. I

\s rvrll lrr' st't'n. lltts l
.' pr't spl:tt'ttll', \l('l). l lle
I r'nrrrlt'lrt rls tttvt'ttlots,

I ltt'or tttt (1. I (.\r'r'r'ss

lr.r', ,r2, r. ,(t).tttrl

is ttscrl to elurccl orrt lltc lrctrurl cortrplcri{v ol
rtltirt lltcort'rrr. wlrit'lr w:ts n:rrrrt'rl llrt'',,\tt't'ss
('iul n()\\' llt' t'ovt'tt'rl.

l ,r'ttuttl lor S1llu1 l rt't's): Supltost' llr;rl rrorlc r

l.tttl, r,,(r) ltt',1 lrr'lotr' llrl lllr',ltl.rrrrrl' ..1,'lr

SYMBOLTABLES II5

and that after the step its size and rank are sr(x) and r,(x). Then the

amortized complexity of the ith splaying step is at most 3r;(x) -
3r,-r(x), unless it is the final step, in which case the amortized
complexity is at most I * 3r,(x) - 3r,,r(x).

Proof: Consider first the amortized complexity of a Case I splaying
step:

The actual complexity is two rotations, and only x, y, and z change in
size and rank. So

ai: ti + O(4) - O(f,-')
: 2 + 4(x) * rij) * riQ) - ri-(x) - ri-(!) - ri-(z)

-- 2 + rij) * riQ) - ri-{x) - ri-{l)

This last line follows because si-r(z), the size of the subtree rooted at
z before the step, equals s,(x), the size ofthe subtree rooted at x after
the step.

Now before the step, y is an ancestor of x, so r,
'(y)

> ri-lx).
Similarly, after the step, / is a descendant of x, so rr(-1,) < ri(x').
Substituting these values gives

ai=2 * ri@) I riQ) - 2ri-,@)

The lemma is now used to cancel out the actual complexity of 2.

Lcta : sr-r(x)/si(x), and let p : si(z)/si(x). Clearly, a> 0and p > 0,

but we also have

,r * p : (s, r(x) * sdz))/s;(x)< I

l'lris lbllows bccause, as the diagram above shows, si-r(x) encom-

l)irsscs.l, .r. and /J; .s,(;) cncompasses C, z, and D; and together these
corrt:rin cxactly onc noclc lcss than s,(x). Therefore, by the lemma,

krg,(.r, 1(r)/r,(t)) | log'(.r',(:)/r,(.r)) < -2

so llt:rl

r, ,(r) | r,() 'r,(r)

I I6 ALGORITHMS AND DATA STRUCTURES

and then

2r1$) - ri lx) - riQ) - 2>0.

This non-negative quantity can now be added to the expression
a, above, giving

ai<[2 I r,(x) I r,(z) - 2r,_,(x)] * l2r,(x) - ri_lx) - r,(z) - 2)

: 3r(x) - 3ri-lx')

and the theorem is proved for Case l. The other two cases are left as
an exercise; Case 2 is similar, and Case 3 is quite simple. I

Now the lotal amortized complexity of an insertion or retrieval is

- 3r,r(x) - 3r--lx)

: I + 3log2n

since x is the root after the final rotation, so that s-(x) : n. Thus the
amortized complexity of an insertion or retrieval is O(logn). Any
sequence of m of these splay tree operations will have O(mlogn) worst-
case complexity, which is much better than the O(mn\ worst-casc
complexity of the binary search tree.

6.7 B-trees

Having studied the binary search treee, which has O(logl) avt:nrge
complexity per operation, and the splay tree, which has 0(logrr)
amortized complexity, a data structure of O(logn\ complcxity in thc worst
case, the B-tree of Bayer and McCreight (1972), will now bc considcrcrl.

The B-tree is only one of a large class of trcc structurcs wlriclr achit'vc
this performance; the first was the AVL trcc ol'Aclcl'son-Vcl'skii rrrrtl
Landis (1962). Thc B-trcc has bccn choscrr bccausc it is l poprrl:rr rrrt't hotl
<ll'irrtplcnrc:nting ordcrer'l synrb<ll lablcs orr rlisk units - tlurt is. rllrllrlxrst.s

lrnrl so is lht'rnosl witlclv rrst'tl ol'lrll llrt.rrrt.lltotls.
l:ttsl. lltt' lrirt:u y sctrrt lr lr('(' rs 1',t'rrt'r:rlizcrl .'\ tttttlltntu' sr.tttr lt Itt.r.

nr;t\ lt:tvt' tttotr' llt;ttt ()il(' ('nlt 1' rrt r':tr'lt norlr' l,ot t'r;tnt;rlr..

SYMBOL TABLES lt

T:

is a multiway search tree. The entries within each node are slorcd rrr

sorted order. For each gap between two entries, there is a subtrt'c
containing all the entries whose keys lie between those two entries. To thc
lcft of the entry with the smallest key in the node is a subtrec wl"rosc

cntries are all smaller than that entry; similarly there is a subtrt'c
containing large entries at the right end. Thus, the number of subtrccs ol'
arry internal node is one greater than the number of keys in the nodc.

Searching and traversal in a multiway search tree are sirrrplt'
gcneralizations of the corresponding algorithms for binary search trct.s.
l;or example, consider searching for a key x in the tree shown abovc. ll
v < 25 the search goes left; if 25 < x<29 the search goes downt antl rl'
l9 < x the search goes right. Linear search within the node may bc usctl rl
thcre are only a few entries in it, or binary search if there are many. Ilrr.
l)rocess is repeated recursively. Traversal in inorder is also quitc sirrrplt.
to traverse atree T, traverse its first subtree, then visit the first cntry ol rts
root. then traverse the second subtree, etc., finishing with a travcrsc ol llrt'
l;rst subtree.

A B-tree of ordern is a multiway search tree that obeys thc lirlkrwrrrli
rrr vartant:

(|) -the root is either an external node, or it has betwccn 2 rrrrrl rrr
t'lrildren inclusive:

(.l) Evcry internal node (except possibly the root) has betwccn f rrrll I rrrrtl
lr children inclusive:

(l) 'l'hc external nodes all have equal depth.

Itrl cxamplc, hcrc arc some B-trccs of ordcr m: 4'.

tl

Ilrt' lttsl lrvo tottrltltolts tttirkr' tl possrlrlt' to lrllotlrlt'lt lirt'tl iunorrnl ol
rn('nl()t\ lo r';ttli rtotlt (,,1r:trt'lrtt ltt ltttkr. llt I t'ttlttt's.:ttttl:t tottttl
lrt'lrl) tt'l lrt",tttt'ol rr,r',lrrr1'. lr",., llr:rrrlr,rll()l tl ('\(t'pl Po.,.,rlrlt rnllrr'rool

for

rntnls- sr
.Lo,: /a, I a,n
r: I i: I

rnl
\-f- /(3rit) - 3r, r(x)) * I
,:l

: I + 3r^(x) - 3r6(x)
< I + 3r^(x)

