110 ALGORITHMS AND DATA STRUCTURES
and finally, multiplying through by 2(n + 1), proves

Theorem 6.2: The average complexity of a sequence of 7 insertions
into an initially empty binary search tree, assuming that each of the
n! distinct permutations of 1, 2, ..., n is equally likely to be an
instance, is

An)=2(n+ 1)H, — 4n
where H, = X', 1/i is the nth Harmonic number. (]

The formula X7 1/i cannot be simplified any further, as far as anyone
knows, but there is an approximation H, =Inn + y, where y = 0.5572
is Euler’s constant. So A(n) is about 1.38nlog,n for the n insertions,
which, loosely speaking, is O (logn) per insertion — considerably less than
the worst case.

This analysis can be extended to include retrievals (Exercise 6.6) and
updates (which are O(1), since a pointer to the entry is given). But it tells
us nothing about the binary search tree when deletions occur, and in fact
almost nothing is known (Knuth, 1973b).

6.6 Splay Trees

In Section 6.3 several heuristics for adjusting a linked list to take
advantage of locality of reference in the operation sequence were studicd.
The most successful one was move-to-front: after accessing entry x, move
it to the front of the list. This suggests that the analogous heuristic for
binary search trees should be tried: after accessing node x, move it to the
root of the tree, where it will be found quickly by subsequent accesscs.

A binary search tree is not as simple to adjust as a linked list, becausc
the condition that the key in a node be greater than all the keys in its left
subtree and smaller than all the keys in its right subtree must be
preserved. (This condition was called the binary search tree invariant in
Section 6.4.) Nevertheless, there is a way.

Consider any internal node y that has a left child x which is also in
ternal. A right rotation at y adjusts the tree so that y becomes the right
child of x:

e O
On &7 B O

SYMBOL TABLES 111

A, B, and C are arbitrary subtrees, possibly empty. The adjusted tree has
the same nodes as the original, and, most important, the binary search
tree invariant is preserved. This is easily verified by traversing the two
trees in inorder: both give the ordering 4, x, B, y, C, so if the invariant
holds in the first tree, it holds in the second.

A left rotation is similar, going the other way:

Again, the binary search tree invariant is preserved. These rotations
provide a general way to adjust binary trees; they were first used by
Adel’son-Vel’skii and Landis (1962).

Rotations are useful here because in each case the depth of node A
decreases by 1. Thus, a sequence of rotations at the parent of x will move
X to the root. For example,

I'his gives a first heuristic for binary search trees: after accessing (that is,
iserting or retrieving) a node x, move it to the root by a sequence of left
and right rotations. This heuristic, which is called move-to-root, has been
studied by Allen and Munro (1978) and by Bitner (1979).

Move-to-root should improve the performance of the binary scarch
tree when there is locality of reference in the operation sequence, but it is
notideal. The final tree in the example above is marginally less balanced
than the starting tree, and the example

() O]

112 ALGORITHMS AND DATA STRUCTURES

makes it clear that move-to-root will not turn an unbalanced tree into a
balanced one.

Sleator and Tarjan (1985b) have found a way to move x to the root

:md(simultaneously clean up an unbalanced tree. They perform the
cquivalent of two rotations at each splaying step:

Case 1

Case 2

Ilach case has a symmetric variant, not shown here. Altogether these four
cases account for the four possible places that x could occupy as a
prandchild of z. It is easy to verify that these transformations preserve the
binary search tree invariant.

After these splaying steps have been performed as many times as
possible, x will be the root or a child of the root. If x is a child of the root,
we perform a final rotation to bring x to the root:

I'he whole process is called a splay at x, and a binary search tree with
splaying 1s called a splay tree.

It happens that Cases 2 and 3 do exactly what move-to-root would do
m the same situation. However, applying move-to-root to Case | would
yield

SYMBOL TABLES 113

which is not the same. The crucial difference is that, while move-to-root
leaves B at its original depth, the splaying step moves both subtrees of x
up at least one level. Although subtrees C and D appear to lose out in
splaying’s Case 1 transformation, they become descendants of x and so
move upwards in later splaying steps. Here is a larger example which
shows clearly how splaying balances an unbalanced tree:

When implemented carefully, splay trees are very fast in practice (Jones,
1986).

Amortized analysis of splay trees. An insertion or retrieval has two
stages: the search down some path, followed by splaying back up the path.
I'he search can be ignored, since its cost is of the same order as the splay,
and the number of rotations performed while splaying (or equivalently,
the depth of the accessed node) can be taken as the measure of
complexity.

The potential function used in this analysis is quite remarkable. Let
¢ (\) be the number of nodes in the subtree rooted at x, and let r(x), the
rank of x, be defined by r(x) = log, s(x). For any splay tree 7, define

D7) = zr(x) = Zlngs(X)

xel xeT

It 7"1s complete, ® is small. For example,

114 ALGORITHMS AND DATA STRUCTURES
yields @ (7) = log,5 + log,3 + 3log,1 = 3.9. If T'is skew, ® (7' is large:

i

vielding ®(7) = log,5 + log,4 + log,3 + log,2 + log,1 = 5.9. So
M (7) 1s reminiscent of the internal path length i(7), modified to have an
() (nlogn) maximum rather than O(n?). This connection with internal
path length is clarified by Exercise 5.9.

As has been seen, splaying at x consists of a number of steps:

| splaying step at x (Case 1 or 2)
i splaying step at x (Case 1 or 2)

m splaying step at x (Case 1, 2 or 3)

I'he amortized complexity a; = ¢, + ®(7,) — ®(T,_,) will be calculated
lor cach step. Then the total amortized complexity of all the steps will
cqual the amortized complexity of splaying at x, which is taken to be the
cost of the insertion or retrieval.

Before starting the main analysis, the following technical lemma is
required.

LLemma: Forall «and B suchthata> 0,3 > 0,anda + =1, log,«
Flog,f = —2.

Proof: Since log,a + log, = log,«f, and the logarithm 1s a mono-
tone increasing function, its value will be maximum when of3 is
maximum. In the given region, 1t is clear that this occurs when

a 172, when log o + log.f8 2. i |
\s will be seen, this 2 1s used to cancel out the actual complexity ol
Y per splayvimg, step. The main theorem, which was named the “Access
I cmma™ by s mventors, can now be covered.

Fheorem 6.3 (Access Lemn for Splay Trees): Suppose that node
has wze s 00 and ank 7 00 qust belore the th splayimg step

SYMBOL TABLES 115

and that after the step its size and rank are s;(x) and r;(x). Then the
amortized complexity of the ith splaying step is at most 3r(x) —
3r,_,(x), unless it is the final step, in which case the amortized
complexity is at most 1 + 3r;(x) — 3r, (x).

Proof: Consider first the amortized complexity of a Case 1 splaying
step:

The actual complexity is two rotations, and only x, y, and z change in
size and rank. So

a,=t; + NT) — D(T;-))
=2+ rix) + ri(y) + ri(2) — ri-i(x) — rici(y) — riza(2)
=2 r,’(_V) + r,'(Z) - rl*l(x) o ";f|(.V)
This last line follows because s;_,(z), the size of the subtree rooted at
z before the step, equals s;(x), the size of the subtree rooted at x after
the step.
Now before the step, y is an ancestor of x, so r, () =r,— (x).
Similarly, after the step, y is a descendant of x, so r;(y) = ri(x).
Substituting these values gives

a;,=2+r(x)+r(z)—2ri_(x)

The lemma is now used to cancel out the actual complexity of 2.
Let o = s, (x)/s:(x), and let B = s,(z)/s:(x). Clearly, « > 0 and B > 0,
but we also have

a+ B = (s 1(x)+ s(2))si(x)=1
I'his follows because, as the diagram above shows, s;-(x) encom-
passes A, v, and B s,(z) encompasses C, z, and D; and together these
contain exactly one node less than s,(x). Therefore, by the lemma,

log (s, (/s (V) F logs (s, (2)/s;(v) = —2

SO that

[R B N 1,(\) :

116 ALGORITHMS AND DATA STRUCTURES
and then
2ri(x) — ri-(x) — ri(z) —2=0.

This non-negative quantity can now be added to the expression for
a; above, giving

a;=[2 + ri(x) + ri(z) = 2r,_; ()] + [2r}(x) — ri—;(x) — ri(z) — 2]
= 3ri(x) — 3ri-i(x)

and the theorem is proved for Case 1. The other two cases are left as
an exercise; Case 2 is similar, and Case 3 is quite simple. [|

Now the total amortized complexity of an insertion or retrieval is

m m—1
Za, - z a; + ap
=1 i=1
m—1
< D 3r(x) = 3 1()) + 1 = 35,0 = 3r1(x)
i=1
=1+ 3r,(x) — 3ry(x)
=1+ 3r,.(x)

= 1 + 3log,n

since x is the root after the final rotation, so that s,,(x) = n. Thus the
amortized complexity of an insertion or retrieval is O(logn). Any
sequence of m of these splay tree operations will have O(mlogn) worst-
case complexity, which is much better than the O(mn) worst-case
complexity of the binary search tree.

6.7 B-trees

Having studied the binary search treee, which has O(logn) average
complexity per operation, and the splay tree, which has O(logn)
amortized complexity, a data structure of O(logn) complexity in the worst
case, the B-tree of Bayer and McCreight (1972), will now be considered.

The B-tree is only one of a large class of tree structures which achicve
this performance; the first was the AVL tree of Adel’son-Vel'skii and
Landis (1962). The B-tree has been chosen because it is a popular method
of implementing ordered symbol tables on disk units — that is, databases
- and so 1s the most widely used of all the methods.

Fiest, the binary scarch tree s generalized. A multoway search tree
may have more than one entry i cach node. For example

SYMBOL TABLES 1/

is a multiway search tree. The entries within each node are stored in
sorted order. For each gap between two entries, there is a subtrec
containing all the entries whose keys lie between those two entries. To the
left of the entry with the smallest key in the node is a subtree whosc
entries are all smaller than that entry; similarly there is a subtree
containing large entries at the right end. Thus, the number of subtrees of
any internal node is one greater than the number of keys in the node.

Searching and traversal in a multiway search tree are simplc
generalizations of the corresponding algorithms for binary search trees.
For example, consider searching for a key x in the tree shown above. If
v < 25 the search goes left; if 25 < x < 29 the search goes down; and if
29 < x the search goes right. Linear search within the node may be uscd if
there are only a few entries in it, or binary search if there are many. The
process is repeated recursively. Traversal in inorder is also quite simplc
lo traverse a tree 7, traverse its first subtree, then visit the first entry of 1ts
root, then traverse the second subtree, etc., finishing with a traversc ol the
last subtree.

A B-tree of order m is a multiway search tree that obeys the followiny,
imvariant:

(1) The root is either an external node, or it has between 2 and m
children inclusive;

(2) Every internal node (except possibly the root) has between [71/2 | and
m children inclusive;

(3) The external nodes all have equal depth.

I'or example, here are some B-trees of order m = 4:

8.9)
[/l[]ll\l

Ihe hirest two conditions make 1t possible to allocate a fixed amount of

memory to cach node (space for m hinks, m Ientres, and a count
held) yvet be sure ob wastimg less than halt ot except possibly i the oot

